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Abstract 
Fixation plates and screws are commonly used to promote stability and stiffness to 
fractures through the compression of bone fragments. However, the difference 
between the rigidity of an implant and the bone causes stress shielding, and can 
lead to excessive resorption in the vicinity of implants, thereby causing subsequent 
implant loosening and failure of fixation. In this study, finite element analysis 
(FEA) software is employed to generate a simplified three-dimensional model of a 
transverse femoral fracture affixed with a plate. The first model discussed in this 
paper is a validation study, proving the qualitative accuracy of using FEA, while 
the second model is one of increased fidelity and is used in a parametric study to 
delve into the effects of plate and screw parameters on the level of resultant stress 
shielding in bone underlying the plate. The models discussed reveal insight into the 
nature of applied fixation plates. Direct compression plating, although inherently 
stable, will cause stress shielding in bone and can result in bone loss, screw 
avulsion, and fixation failure. However, as seen in the parametric study, which is in 
agreement with previous works, a decrease in implant flexural rigidity, through a 
decrease in plate thickness and angle, will decrease the level of stress shielding 
present in a bone-implant system. As well, the importance of screw placement, 
implant materials, and the future use of FEA as a prospective tool is discussed. 

Key words: Finite Element Analysis, Bone Fracture, Remodeling, Fixation, Stress 
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1. Introduction 

Internal fixation of long bones with plates and screws dates back over half of a century 
and although many advances have been made since their early development, compression 
plating still remains one of the most conventional plating techniques. However, the major 
disadvantages involved with the use of direct compression plates, wherein primary healing 
is promoted through direct compression of the plate to bone, include: the bending required 
prior to surgical insertion; the damage caused to vascular tissue adjacent to the bone; and 
most importantly stress shielding in the underlying bone (1).  

With the application of internal plating devices, unevenly distributed loads are 
introduced into the bone-plate system, because of the large difference between bone and 
implant moduli of elasticity and also flexural rigidities, which disrupts the normal level of 
mechanical stimuli transmitted to bone. This phenomenon, known as stress shielding, 
invokes a negative rate of bone remodeling which can lead to bone loss and subsequent 
implant loosening when the implant is left in vivo (2). 

Limiting the difference in flexural rigidities between implants and bone through a 
change in material properties is the most well known method for reducing stress shielding. 
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As early as 1970, Allgower et al.(3) tested the biocompatibility of titanium alloy dynamic 
compression plates, and found that in conjunction with spherical screw holes they are 
advantageous in their resistance to corrosion. They also found that titanium alloy dynamic 
compression plates are more malleable for surgical bending, and they have an elastic 
modulus closer to that of bone which causes a reduction in stress shielding. In a later study, 
Woo et al.(4) proved that decreasing the rigidity of implants alone causes a significant 
decrease in stress shielding. Experimental evidence (5; 6; 7; 8) that proves the effectiveness of 
this method has provoked an increasing trend towards the general acceptance and use of 
more flexible plating systems (i.e. titanium alloys). However, controversy still exists over 
the optimal level of implant flexibility; one that will limit stress shielding while maintaining 
a sufficient level of stability (9). It has been hypothesized that a small amount of 
micro-motion at the fracture site will promote more rapid fracture healing; as in this case, a 
combination of primary and secondary healing occurs (10; 11). Considering that stable fixation 
is crucial for the union of fracture segments immediately following implantation, an ideal 
bone-implant system will gradually transform from one of rigid stability to increased 
flexibility as fracture healing progresses. 

Since flexural rigidity is dependent both on the material properties and the 
cross-sectional area of the plating device, we postulate that any change to the implant 
geometry, while maintaining the same material properties, should result in changes in the 
stress transfer to the underlying bone. Although research(6) has shown that a reduction in the 
thickness of fixation plates reduces the amount of stress shielding of bone, research into 
other geometric factors has not been considered. The main focuses of our parametric  
study (12), in which the cross-sectional area of the plate is altered, is to determine the level of 
influence the plate geometry would have on stress shielding. 

The success of fracture fixation is dependent on many factors, some of which include: 
the proper placement of the device, the quality of bone into which it is inserted, and 
choosing the most appropriate device for a particular type of fracture. From a biomedical 
engineering standpoint, the first two factors cannot be controlled; however parameters 
involving the design of the fixation device in question can be analyzed and controlled prior 
to implementation. The use of finite element analysis (FEA) is a well recognized tool for 
performing in situ research in this area and allows researchers to gain further insight into the 
behaviour of complex systems which would otherwise rely on trial-and-error type methods, 
mostly that of in vitro experiments (13; 14)(15). 

The primary focus of this paper is to compare our FEA studies (16; 12) with other work in 
the field (17; 18) in an effort to draw conclusions on ways to reduce the effects of stress 
shielding through manipulation of plate structural and material properties. An outline of the 
methods used in our FEA analyses of both a primary validation study (16) and a parametric 
study (12) of a fracture fixation plate will be presented. 

2. Materials and Methods 

2.1 Predicting bone stresses using composite beam theory 
As a preliminary theoretical method, composite beam theory is used to predict the 

stress in bone underlying plates, as modeled in our two FE studies. In the case of our first 
model, the plate is rigidly affixed to the bone, so we are able to consider the model as a 
rough approximation of a two-material composite beam. We are able to predict the stresses 
in bone at the fracture site using the following equation (19): σBൌ- PEBEBABEPAP - EBMtBEBIBEPIP     (1) 

Using Eq. (1) we can calculate the stresses in bone (σB) at a distance (tb) from the neutral 
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3.1.2 Comparison of predicted bone stresses with FE model results 
In Fig. 4 we compare the longitudinal principal stresses resulting from our FE model 

(along the top cortice of the bone) to our predicted stresses. The results from the FE model 
produce much larger compressive stresses at the bottom of the cortice in comparison to the 
top, which is expected, however, the stresses are significantly higher than those calculated 
using composite beam theory.  

 

Fig.4 Axial loading of a simple direct contact bone-plate model 

With the application of both a compressive axial load and an eccentric axial load to the 
plated model, a bending moment results (see Fig.5). This is in agreement with our 
theoretical prediction wherein a bending moment exists due to the application of 
compressive axial load at a distance away from the composite’s neutral axis. As seen in the 
figure, as is intuitively expected, maximum stress levels occur in the proximity of the 
fracture site. 

 

Fig.5 Highly eccentric axial loading of the plated-bone model 

In the case of pure bending, as seen in Fig. 6, the maximum region of stress in the plate acts 
at the bone-plate interface, located distally from the fracture site. This is the expected result 
due to the direct contact region that is modeled between the plate and bone. As the 
composite is bent, the much stiffer plate resists the bending motion, therefore resulting in a 
high stress concentration where the plate would likely separate from the bone. 
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Fig.6 Pure bending loading of the plated-bone model 

Results from the validation model, correspond well with previous experimental results 
performed by Cheal et al.(18; 17), and demonstrate the effectiveness of plate application in 
reducing bone strain, and the subsequent reduction in longitudinal bone stresses. Figure 7 
demonstrates the differences between longitudinal stresses for the control and plated models. 
Reductions in stress range between 71-92%, 85-95%, and 18-90% for the axial, pure 
bending, and applied eccentric axial loads. 

 
Fig.7 Comparison of bone stresses for the control and the fixed bone model 

The difference in predicted versus FE model results is due to the simplifying nature of 
the composite beam theory, which does not account for the sliding contact surfaces between 
the plate and bone. The theory is only accurate for predicting the axial stress component in 
the cross section at the center of the plate where little sliding occurs (the smallest difference 
between predicted and FE results are just below the plate, i.e. at 12.7 mm in Fig. 4). The 
limitations of using composite beam theory to accurately predict the stresses in bone-plate 
constructs is noted by other researchers (8; 18) and demonstrates the usefulness of 
computational methods for these analyses.  
3.2 Parametric model 

In an effort to create a more realistic situation, the parametric study incorporates 
simplified screws into the model and also allows for sliding to occur at the bone-plate 
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interface. Our theoretical predictions of resultant bone stresses (immediately underlying the 
plate) are compared to our FE model results below, in order to demonstrate the limitations 
of using the composite beam theory for predicting stresses in bone-plate constructs.  
3.2.1 The effect of plate thickness on bone stress  

Using the geometry and material properties modeled in our parametric study in Eq. (1), 
it is predicted that at the smallest plate thickness, i.e. 3.0 mm, the stress in bone just below 
the plate is tensile (see Fig. 8). While maintaining a plate angle of 60˚, as the thickness of 
the plate increases, the neutral axis of the bone-plate system moves further upward towards 
the plate causing a decrease in compressive stresses in bone below the plate until a plate 
thickness of 3.7 mm is used, wherein bone stress then becomes compressive. This 
compressive stress increases as the thickness of the plate increases from 3.7 to 4.5 mm. 

 
Fig.8 Theoretical predictions of stress in bone underlying a plate of changing thickness 

As seen in Fig. 9, our FE results demonstrate a decrease in bone stress for an increase 
in plate thickness. The variation between the theoretical prediction of stress and our FE 
results can be explained by the boundary conditions used. For our theoretical calculations, it 
is assumed that the bone and plate are rigidly affixed, which is a poor approximation of the 
bone-plate interface, where sliding motion exists. 

 

Fig.9 A decrease in effective stress along the bone-plate interface occurs when the thickness 
of the plate is increased 

3.2.2 The effect of plate angle  
The theoretical prediction of bone stress due to an increase in plate area is shown in Fig. 

9. At a plate angle of 60˚ the bone is under compressive stress which decreases until the 
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plate angle is modeled as 67˚, wherein the bone experiences an increase in tensile stress up 
to the modeled plate angle of 90˚. While maintaining a thickness of 4.5 mm, an increase in 
the plate angle effectively moves the neutral axis of the bone-plate towards the centre of the 
bone, thereby creating tensile stresses in the top cortice of the bone when a plate angle of 
67˚ or larger is modeled. 

 
Fig.10 Predicted change in bone stress below the plate with a change in plate angle 

Results from our FE model (see Fig. 11) indicate that an increase in plate angle will 
cause a decrease in stress in the underlying bone, i.e. a higher degree of stress shielding 
develops in the neighbouring bone. The variation between the theoretical prediction of bone 
stress and our FE results is quite prominent here, and can once again be explained by the 
assumptions made about the bone-plate interface. In the FE model, because of the sliding 
contact between the bone and plate, the majority of the bending moment is effectively 
transferred to the plate. 

 
Fig.11 A decrease in effective stress in the bone at the bone-plate interface occurs with an 

increase in plate-bone contact area 
3.2.3 The effect of screw position  

Experimental research has highlighted some of the geometric factors responsible for the 
pullout strength of bone screws (20; 21). However, little information involving the stress 
distribution between screws and bone exists. Our parametric study reveals an important 
consideration involving bone screw stresses; the distal screw is the highest region of 
concentrated stress, which is in agreement with previous works (18). Stress and strain 
reductions in bone are seen to be the most apparent in between the two innermost screws, 
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near the fracture site (see Fig. 
12). This indicates that stress 
shielding is most prominent 
in the vicinity of the fracture. 
According to other 
researchers (15), this is 
beneficial upon initial 
fracture reduction; however, 
in the post-union phase, the 
reduction of load will affect 
the rate of remodeling and 
can cause subsequent bone 
loss. 

4. Discussion 

A comparison of our FE models’ results, to those predicted theoretically, demonstrates 
the limitations of using the composite beam theory to predict stress-shielding in a 
bone-plate system. From our validation model (16), we notice that axially compressive loads 
applied away from the composites’ neutral axis will cause bending of the plated-bone 
construct, which was predicted by our theoretical calculations. This suggests that composite 
beam theory does work well for predictions in the mid-shaft of the composite during axial 
and bending loading when a fixed contact region is considered between the bone and plate. 
The theory does not take into consideration the importance of relative motion between the 
plate and bone, and therefore considerable differences between the theoretical model and 
the parametric model (which allows for sliding motion at the bone-plate interface) can be 
seen. Moreover, the complex nature and geometry of actual bone-plate systems with screws 
is reliant upon FEA for investigative analysis of their non-linear behaviour. 

In order to observe the stresses in bone underlying the plate, in our validation model we 
used compressive axial and eccentric axial loads, as well as pure bending. Under all loading 
conditions, the application of a rigidly fixed plate to a fractured bone reduces the levels of 
bone strain and longitudinal stresses immediately below the plate (in comparison to the 
control bone under the same load). This stress shielding effect is in agreement with 
experimental evidence by researchers such as Claes and Woo (2; 6), whom demonstrate that 
bone loss is exacerbated by the use of stiff plates (2; 6). Although the loads modeled are 
simplifications of the complex physiological loads that occur in vivo, we notice that, in both 
theory and our FE model, axially compressive loads generates higher overall bone stresses. 
Since less axial compressive loading will be present in the long bones of upper extremities, 
in comparison to those of the lower extremities (22), it is likely that stress shielding is more 
pronounced in these cases of fracture. A quantitative experimental comparison of stress 
shielding between the two fracture types is greatly needed.  

Using the composite beam theory we predicted that bone stress is dependent on the 
geometry of the plate and will transform between tensile and compressive stresses in 
relation to the composites’ neutral axis. However, since the theory relies on a fixed interface 
between the bone and plate, we observe some variances with our FE results. For the range 
of thicknesses analyzed, our FE model indicates that an increase in plate thickness results in 
a relatively linear decrease in effective bone stress immediately below the plate. Since the 
angle of the plate is not changed in these cases, the neutral axis of the bone-plate construct 
will shift upwards towards the plate causing an increase in bone compression (for all points 
that lie below the neutral axis). Since Von Mises’ stresses are considered in our FE model, 
the results will represent the combination of equivalent stresses (both tensile and 

Fig.22 Parametric model equivalent strain 



 
 

 

Journal of  Biomechanical 
Science and Engineering  

Vol. 5, No. 2, 2010 

138 

compressive) at the point in question, i.e. in bone just below the plate. 
According to Woo and co-workers (5) the plate axial stiffness is the dominant factor that 

alters bone stresses; however, they do not consider the natural geometry of the plate, or the 
pre-surgical bending of implants in their models. Bone plates are generally designed to 
include a curved cross-sectional area in order to conform to the cylindrical-like 
characteristics of long bones. For this reason, in this study, we analyzed the effect of plate 
angle in relation to stress shielding. An overall increase in stress shielding is demonstrated 
by an increase in plate angle, however unlike plate thickness, this parameter does not 
demonstrate a linear relationship with observed bone stress. When increasing the plate angle, 
the type of stress in bone is more complex due to the altered load distribution caused by the 
limitations of the geometry. Radiological assessment has shown that limiting the contact 
area between plate and bone reduces the amount of visible stress shielding as well as the 
amount of damage to the blood supply (23), so we postulate that the plate angle should be 
limited. 

It is also noted that special attention should be paid to the placement of screws in the 
plate-bone system (12). Cheal and co-workers reported that the screw nearest the fracture site 
is at risk for failure during the early stages of fracture healing; however, the most distal 
screw is at risk for prolonged fixation (18). Our results demonstrate that the outermost screw 
is most likely to fail (12), which corresponds to results by Simon et al.(15) that consider a 
similar FE model (in the post-union phase of fracture healing). Based on our findings, an 
arrangement that reduces the likelihood of stress shielding near the fracture site and screws, 
without interfering with initial reduction, should be sought. Our future models explore the 
effects of screw geometry on the stress distributions in neighbouring bone. 

Although some researchers, such as Perren et al.(24), suggest that necrosis associated 
with vascular insufficiency is the main cause of increased bone porosity, most   
researchers (10; 5; 6; 7; 8), attribute increased levels of stress shielding to a reduction in 
mechanical stimuli caused by implants. As is the case in all other FEA works    
referenced (18; 25; 14), and for the sake of simplicity, we consider a standard compression plate 
and neglect the effects of soft tissues in our models. Although interstitial tissues have an 
overall effect on the stress distribution of the system (13), their significance is minimal in 
comparison to the distributions resulting from variances in implant material and geometry. 
Clinically, the alleviation of decreased vascularity and soft tissue damage can be achieved 
with devices such as the Less Invasive Stabilization System (LISS) and the Point-Contact 
Fixator (PC-Fix) (26; 27; 28). 

Although three-dimensional models can be used to predict screw stresses and contact 
stresses (15), their predictive capabilities is questionable, as even radiological and clinical 
testing methods, when used alone, are inaccurate in predicting fracture healing (11). A 
combination of FE and experimental evidence would be ideal to accurately predict the 
outcomes of fracture healing for various implant designs. The lack of a universally accepted 
and comprehensive bone remodeling theory (29) is a main reason for not being able to fully 
analyze stress shielding effects in a bone-implant system to date. Although, many 
researchers have incorporated adaptive remodeling theories into simple FE bone    
models (14; 30; 31), none of the present models can fully capture all aspects of the very 
complex bone remodeling process (32; 33; 34). Along with the incorporation of a universal bone 
remodeling theory into bone-implant systems, improvements to the realism of geometries, 
material properties, and boundary conditions will increase the accuracy of predictive 
bone-implant interaction models. 

5. Conclusions 

Results from our studies indicate that FE models are useful in qualitatively analyzing 
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the effects of stress and strain distributions in simplified bone-plate constructs resulting 
from different loading conditions. The application of a plate to a bone causes a significant 
reduction in bone stresses, most importantly at the fracture site (16). This is shown 
experimentally by others (24; 7). We have shown that one method to reduce stress shielding, 
besides the selection of more flexible plating materials, is to reduce the implant flexural 
rigidity through limiting plate thickness and angle. A reduction in stresses in and around the 
fracture site is also noted by a change in the distal screw position, which demonstrates the 
importance of screw placement. 
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